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A high-fidelity simulation is developed to test the theory that relative range and range-
rate measurements between a satellite in a geosynchronous orbit and a satellite in or-
bit about the Earth-Moon L; point may be used to improve the navigation accuracy of
both satellites, compared with ground-only tracking. Recent research has determined that
satellite-to-satellite range measurements between these two orbits are sufficient to perform
absolute state estimation as well as relative state estimation of both satellites — a technol-
ogy known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation).
This study quantifies the improvement in accuracy when LiAISON is used to supplement
ground tracking of one or both satellites in a very realistic simulation. Orbit determination
techniques show that the inclusion of LIAISON measurements with ground tracking obser-
vations can greatly improve absolute position and velocity estimates for both satellites in
geosynchronous orbit and about the Earth-Moon L; point.

I. Introduction

Through the use of satellite-to-satellite tracking (SST), new navigation techniques have revealed the
ability to perform accurate absolute navigation of one or more satellites in a given constellation. Satellite
navigation for low Earth orbit (LEO) has been revolutionized through the Global Positioning System (GPS)
and the use of accurate atomic clocks for time keeping. Some of the successful aspects of GPS have been
extended to a relatively new navigation technique known as LIATISON (Linked Autonomous Interplanetary
Satellite Orbit Navigation).!»? LiAISON has the ability to extend some aspects of GPS to orbits in new
regimes beyond LEO for which a minimum of two satellites in a LiIAISON constellation are all that is
necessary to perform absolute autonomous navigation.

LiAISON navigation typically involves two or more satellites collecting relative tracking data to deter-
mine the absolute positions and velocities of each vehicle in space over time. In most applications, relative
measurements only permit a system of vehicles to determine their relative states. For instance, any nor-
mal constellation of Earth orbiters could rotate the entire constellation about the Earth and achieve the
same relative tracking measurements. LiAISON navigation works because the spacecraft constellation is in
an asymmetric gravity field: one that involves both the Earth and the Moon. A time-series of satellite-
to-satellite measurements in such a system is unique and fixed to the positions of the Earth and Moon.
Therefore, LIAISON navigation results in the determination of both satellites’ absolute trajectories using
relative measurements.

The LiAISON navigation technique has been shown to be very beneficial when applied to the navigation
of lunar satellites, including low lunar orbiters and lunar libration orbiters.!® This technique has been shown
to generate better navigation accuracy than typical ground-only tracking. It has been recently hypothesized
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that the benefits of LIAISON may apply to Earth orbiting satellites as well. This study has elected to
analyze the benefits of LIAISON applied to geosynchronous Earth orbiters because those satellites have
a high demand for improved navigation accuracy. The navigation of geosynchronous Earth orbit (GEO)
satellites is challenging because their positions do not change rapidly over time relative to their ground
tracking stations. GEO navigators rely on complex measurements such as optical tracking in order to
achieve position accuracies as low as 10 meters.?

A dedicated navigation satellite anywhere near the Moon has a huge advantage over ground stations
when it comes to tracking GEO satellites using radiometric data. Where the range between a GEO satellite
and a ground station is typically very constant, the range between a GEO satellite and a satellite near the
Moon is very dynamic. Further, the uniqueness of a halo orbit about the Earth-Moon L; point generates a
clear, dynamic signature in the relative SST observations. Clear signals in the data can be used to lock onto
the position and velocity of both satellites.

This paper examines a new navigation concept in detail, studying the benefits of supplementing standard
ground tracking measurements of two satellites in the Earth-Moon system with relative satellite-to-satellite
tracking observations made between these satellites. A concurrent study has demonstrated the viability of
the LiIAISON technique applied to a constellation of two satellites, where one is in orbit about the lunar L,
point and the other is at GEO.!%!! This paper quantifies the improvement in accuracy that one may expect
by supplementing conventional radiometric ground tracking with LiAISON measurements.

This study develops high-fidelity simulations to quantify the benefits of LiAISON applied to tracking
GEO and L; satellites. The scenario begins with typical ground-only tracking to establish a baseline navi-
gation accuracy of both satellites. This ground-only tracking involves radiometric data to remain consistent
throughout the study. LiAISON measurements are then introduced to quickly improve the navigation ac-
curacy of both satellites. The simulations include dynamical modeling errors, measurement errors, and
measurement biases. Furthermore, the measurements include large measurement gaps to simulate other
activities being performed by each asset. A tracking schedule analysis is performed over a wide range of
possible observation pass gaps. The results are compared to both continuous ground-only tracking and
LiAISON tracking.

II. LiAISON Navigation

Autonomous SST relies on an ability to estimate the absolute positions of a spacecraft without the use
of ground station observations. To do so, the size, shape, and orientation of the satellite’s orbit must be
observable from the measurements available between the linked spacecraft. The observability of the system
depends on one of these satellites occupying a unique trajectory. The determining factor in whether a unique
trajectory can exist, and thus whether LIAISON is possible, is the acceleration function acting on the orbiter.
No unique orbits exist in a symmetric acceleration field, one in which the function and its time derivative
are symmetric. Even in regions with desired asymmetric perturbations, uncertainties in the force model and
observation noise can counteract these effects in the accelerations and prevent SST orbit determination. As
a result, the asymmetric acceleration effects must be great enough to outweigh the uncertainties and force
model issues that arise.

Acceleration functions with sufficient asymmetry for LIAISON are provided by three-body systems that
give rise to libration point orbits (LPOs). The third-body perturbation of the Moon is sufficient to provide
the asymmetry necessary for locally unique trajectories to exist. Due to the effects of the gravitational
forces of the Moon and Earth, lunar LPOs can only have one orientation with respect to this system. L,
and Lo LPOs are specifically well suited for LIAISON because they are locally unique and reside in regions
where the asymmetry of the accelerations is strong. Under these conditions a spacecraft at one of these
Lagrange points can uniquely and absolutely determine the state of a second satellite using crosslink range
measurements without ground-based observations.

Several papers have demonstrated the benefits of LIAISON navigation applied to satellite constellations
at the Moon. This effort has been motivated by NASA’s aim to develop a permanent presence at the Moon.
Hill et al. explored the cases of 24 satellites placed in combinations of low lunar orbits and libration orbits
about the Earth-Moon L; and/or Ly points.}:3%6 A potential mission was examined in detail, including
only two satellites: one in a 100-km polar orbit about the Moon and the other in a libration orbit about
the Earth-Moon Lo point.?> The results demonstrated that satellites may be navigated at the Moon using
realistic constraints and achieve accuracies on the order of 100 meters or less for halo orbiters and 10 meters
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or less for low lunar orbiters. Any ground tracking passes would only improve the solutions.

The scenario examined in this paper extends the concepts of LIAISON navigation beyond constellations
fixed at the Moon. This study considers placing one satellite in a geosynchronous orbit, since there is
significant interest in improving the navigation of GEO satellites; future studies will examine other orbits,
including low Earth orbits, lunar transfers, and interplanetary trajectories. It may be the case that NASA’s
lunar development warrants a dedicated navigation satellite; this study demonstrates that such a satellite
may be able to offer substantial benefits to Earth-orbiting satellites as well.

In order to make an accurate analysis of a LIAISON navigation solution between an L; and GEO con-
stellation, an understanding of current navigation accuracies for both regimes is necessary. For the GEO
regime, most commercial operators track GEO satellites to within a kilometer in position. More stringent
requirements are necessary for the TDRSS system. A position navigation accuracy of less than 100 meters is
required, though in practice position navigation solutions tend to be accurate to within 30 meters.'? Sabol
has shown that range-only observations can be used to perform orbit determination to within 30 meters in
position for GEO satellites by using several different tracking stations.'®> Moreau et al. have shown that one
could track GPS signals from GEO for a position accuracy of about 15 meters.'* Tombasco showed that
optical tracking could reduce the uncertainty of a GEO orbit to within 10 meters.”

Navigation of satellites in Lunar LPOs has only recently been done through the ARTEMIS mission in
late 2010 through 2011.'%:'6 The primary measurement type for this mission was radiometric tracking data
from the Deep Space Network (DSN), the Universal Space Network (USN), and the Berkeley Ground Station
(BGS).1718 The DSN navigation data used for the ARTEMIS mission was range and Doppler measurements
with a tracking pass schedule of 3.5 hours of data every other day making an attempt to alternate stations
from the northern and southern hemispheres. Navigation solutions were obtained for each satellite on the
order of 100 meters in position and approximately 1 mm/s in velocity.

The effectiveness of LIAISON is evaluated using orbit determination solely composed of range and range-
rate measurements between two participating spacecraft. A dedicated navigation satellite anywhere near
the Moon has an advantage over ground stations for tracking GEO satellites using radiometric data. While
most satellites are only visible from ground stations at certain times, including those orbiting around the
L, point, a link between a GEO and L; satellite has nearly continuous visibility. Figure 1 demonstrates the
near continuous dynamic range measurements between an example GEO satellite and a satellite traversing
an LPO about the Earth-Moon L; point versus the range of a GEO orbit tracked by a ground station. One
can see clear signals in the data that may be used to lock onto the position and velocity of both satellites.

To demonstrate the advantages and capabilities of a LIAISON architecture, a simulation involving two
satellites, one in a lunar L; LPO and the other at GEO, is examined. Observations with realistic errors and
uncertainties were generated for the satellite constellation. The satellite orbits were determined using a high
fidelity integration and gravity modeling. A conventional Kalman filter was used to process the observations.
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Figure 1. Satellite constellation geometry for truth model simulations for LIAISON and ground tracking.
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III. Dynamical Model and Linearization

Modern orbit determination algorithms commonly employ a propagation of the state and uncertainty
along a reference trajectory followed by measurement processing in order to obtain a more accurate estimate
of the satellites state. A majority of the orbit determination methods use a linearization of the states in
order to propagate state deviations and their uncertainties over time along a specified reference trajectory.
In this section, the theory of the associated dynamical equations for the reference trajectory are derived and
then linearized for use in a conventional Kalman filter that has been derived in Section V.

A. Satellite State Dynamics

In this work, an attempt is made at estimating the state of two satellites, their solar radiation pressure
(SRP) coefficients, and associated biases in the measurement equations. A simplified state vector is used
that contains both satellites’ positions and velocities as well as the constant terms previously mentioned as
given in Eq. 1. The range bias term py;,, does not affect the satellite state dynamics but is part of the
estimated state and is used in the filter and measurement equations.

T
_[pr T LT T T T T
X—[r1 vi 1y vy 0Cgpy 0CRry Wi Wy P, - (1)

The first four elements of the state vector are the position and velocities (both vectors have a dimension
of 3) of the two spacecraft in the Geocentric Celestial Reference Frame (GCRF). The remaining elements of
the state vector are deviations from a priori values of the SRP reflectivity coefficients, empirical acceleration
vectors for both satellites (each vector has a dimension of 3), and the range biases being estimated for each
observation link (a total of 5 in this work).

The time evolution of the state vector X is given by a system of nonlinear first order differential equations.
In this work, the time evolutions of the position and velocity vectors of a spacecraft are given the following
dynamics:

lvi] - L‘g(t,ri) + agrp(t,1:) + an-body (ti; Tws) + [7] - Wi] ’ (2)

RTN

where a,(¢,r) is the gravitational accelerations due to two-body and Earth’s non-spherical body. In addi-
tion to the gravitational acceleration, SRP agrp(t,r;), n-body perturbations a, pody(ri, res3), and empirical
accelerations w;, are acting upon the spacecraft. The Earth’s gravitational potential including the two-body
term is commonly given in terms of spherical harmonics as

I
U(JU,?J;Z) = ;

00 l 1
1+ Z Z (?) Py (sin ¢ge) {Clm cos(mA) + Sim Sin(m)\)}] . (3)

=2 m=0

The normalized Cartesian spherical harmonic model is used in this work for the calculation of local grav-
itational acceleration.'® The normalized Cartesian model does not rely on spherical coordinates and does
not contain any singularities as seen in the classical formulation. The acceleration vector from spherical
harmonics is given in International Terrestrial Reference Frame (ITRF) and must be rotated back to GCRF.
The conversion from the Earth-centered, Earth-fixed reference frame to the Earth-centered inertial reference
frame is computed through the 1976 TAU Precession, 1980 IAU Nutation (no IERS corrections are used),
Earth rotation parameters, and polar motion.2°

The solar radiation pressure model used is based on a constant area, constant reflectance model. The
shadow model used determines an approximate value of the percentage of the Sun’s face that is visible from
the spacecraft location. The radii of the bodies used in the shadow model are taken from the JPL DE405
(Ref 21 and 22) ephemeris, and the solar radiation pressure is adjusted based on the distance from the sun.
The acceleration due to SRP is given by

As T
aspp = PsppCp—2 —222L (4)
m |r®sat|
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where Cg is the reflectivity of the spacecraft, Ag is the cross-sectional area of the spacecraft facing the Sun,
m is the mass of the spacecraft, rgs,; is the vector from the center of the Sun to the spacecraft, and Psgpp
is the solar radiation pressure of the Sun. The value used for Psrp is about 4.5298 x 10~% Pa at one AU.
The variation in Pgrp for various distances from the sun is calculated by

(149, 597, 870 km)?

[T osat]?

(5)

Psrp = Psrp,avu

In addition to the central body non-spherical gravitational acceleration, the gravitation effects of multiple
bodies (n-body) are determined. This can include extra perturbations due to the Sun, Moon, or other planets
in the solar system. The acceleration a,_poqy,; due to the gravitational attraction of body k of the n-bodies
is given by

Tk sat gk

An-body,k = —Hk | 53— + 35—
T (5

k,sat D,k

: (6)

where puy is the gravitational parameter of the th body, ry, sa: is the vector from the th body to the satellite,
and rg j is the vector from the central body to the k' body. The position of celestial bodies is computed
from the JPL DE 405 ephemerides.?! 22

The local empirical acceleration disturbances experienced by each of the satellites are modeled as first-
order Gauss-Markov processes. The process is governed by the following equations of motion

wi = —0B,w; +u;(t), (7)

where w; is the local empirical acceleration vector, 3 is a vector of correlation time constants, and u(t) is
white noise with E [u(t)] = 0 and E [u(t)u”(7)] = 026(t — 7). The acceleration disturbances, w; are given
in a local coordinate frame that coincides with the SRP direction. The rotation matrix [y] . defines the
rotation from the local radial, transverse, and normal (RTN) frame to the GCRF frame. The RTN frame
transformation is given by

uR _ r@sat
Irosat]

ur = upny X Uupr (8)
up X [0, 0, 1]T

uy =

lug x [0,0, 1]

where ug, ur, and uy are unit vectors in the RTN frame. The transformation matrix relating the RTN
and GCRF frame is thus [y] = [ugr,ur,u ~1*. The local acceleration disturbances in the RTN frame can
now be translated into the GCRF frame.

The remaining terms in the state vector X are considered to be constants. The continuous-time dynamics
of these constants thus take the form

6CR,1 = 07 (9)

6Cra =0, (10)
and

pbias =0. (11)

The state dynamics given in equations above can be assembled and written in the convenient continuous-
time model of the form

5 of 19

American Institute of Aeronautics and Astronautics



X(t) = f(t, X(t),u(t)), (12)

where u(t) is a zero-mean Gaussian white process noise vector. This continuous-time dynamical equation is
a first order ordinary differential equation that can be solved using a variety of integration methods.

B. Linearized State Dynamics

The orbit determination filter used in this work requires linearization of the dynamics and measurement
models about an estimate. A conventional Kalman filter is used in which the trajectory is linearized about
the most current best estimate. This filter requires the partial derivatives of the state with respect to an
initial state from ¢y to txy+1. The necessary linearization parameters are the state transition matrix

X (t41)

d(t ty) = 13
( k+15 k‘) 8X(tk) ) ( )
and the process noise transition matrix
8X(tk+1)
INQ ty) = ——" 14
( k+1, k) 8u(tk) ( )
The state transition matrix is obtained by integrating

subject to the initial conditions ®(t,tx) = I along with the reference trajectory X*(¢). The matrix A(t) is
evaluated along the reference trajectory X*(¢) and is given by

_ OF(X™,1)

A = S5,

(16)

where F/(X*,t) is the time derivative of the state vector X(¢). These Jacobian matrices can then be used to
linearize the dynamics as seen in Eq. 17.

[Xpt1 — Xig1] = ®(tps1, tr) [Xk = Xk} + D (tkg1, tr)ug, (17)

where Xk is the a posteriori state estimate at the sample time t; and Xk+1 is the a priori state estimate at
the sample time #51.

IV. Measurement Model and Linearization

Measurement processing is necessary in order for the Kalman filter to update the state and uncertainty
estimate. The Kalman filter used in this analysis requires a measurement model and its linearized form.
This section introduces the theory behind the nonlinear measurement model used in this study along with
the linearization of the measurement model along its reference trajectory.

A. Measurement Model

A simplified measurement model is used for this research. The filter in this work uses an idealized range
and range-rate measurement between the two satellites. A complex model that solves for time of flight and
clock errors is not necessary for the determination if the proposed navigation solution is feasible. Thus, we
use the idealized range and range-rate equations to determine if the navigation solution is at all possible.
An idealized range between two satellites is given as

Pi= \/(rl - r?) : (rl - r2) + Pbias + Prnoises (18)

where r; and rs are the position vectors of the two satellites. The terms ppiqas and ppoise are error terms in
the idealized range equation. The idealized range-rate between two satellites is thus
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PP .
P = 7 + Prnoises (19)

where p = r; — ry is the position vector of one satellite with respect to the other and p = 1y — 5 is the
relative velocity between the two satellites. The error term in the idealized range-rate equation is thus given
as pnoise-

Similarly to the satellite-to-satellite idealized range and range-rate equations, a set of equations for
ground based tracking can be derived. For this set of equations, the position and velocity vectors of the
second satellite, ro and 12, can be replaced by the position and velocity vectors, rs and ry, of a ground
station in GCRF coordinates. In this work, the three main DSN stations are chosen: Goldstone, Madrid,
and Canberra. These stations track the Lunar I; orbiter. Another ground station, located in California,
tracks the GEO satellite. An elevation mask of 10 degrees is used for each tracking station.

B. Linearized Measurement Equations

Similar to the dynamical model, the filter used in this study requires a linearized observation model. The
filter requires the partial derivatives of the measurement model with respect to the state that is linearized
about the most current state estimate. The measurement equation for this system can be written in the
form

Y = h(X,u) +v. (20)

The nonlinear observation equation h(X,u) is a function of the range and range-rate equations previously
defined. The observation function can be rewritten as

T

h(X,u) = [PLiAISON PLiAISON pgmnd Pngund : (21)
The Jacobians required for the filter are thus
. Oh - Oh
Hx = — d Huar=—. 22
XEZox, MO T By, (22)

_ Since the linearized measurement equations are not dependent on the process noise u, the Jacobian
Hyr = 0. The Jacobian with respect to the state however is nonzero and must be calculated either
analytically or numerically. In this work, an analytical partial derivative is simple and can be computed.
The partial derivatives with respect to the satellite’s position and velocity as well as the ground stations
position and velocity are not given here but are easily computed. The partial derivative of the bias and noise
terms are given as

Oh oh

=1 and
8pbias 8pnoise

—0. (23)

This completes the necessary definitions of the linearized measurement equations.

V. Kalman Filter

In this work, a conventional Kalman filter (CKF) is used to estimate the state of the satellites and the
constant parameters given in Eq. 1. The CKF is a sequential processing algorithm and allows one to mimic
real time observation processing as more measurements are received. The algorithm used is derived from
Ref. 23. If X*(t) is a reference trajectory that is near the truth trajectory in the linear regime, then one can
define a state deviation vector x(t) as

x(t) = X(t) — X*(t). (24)

An estimate of the state deviation, %, for a sequential Kalman filter and the associated covariance
matrix, Py, can be propagated forward in time ¢, by

Tpyr = P(tpgr, tr)Ths (25)
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Piy1 = ®(thyr, te) Pe®(teyr, te) T + Q(1), (26)

Q(t) = D(tps1, tk) QT (tey1, ) T, (27)

where Zp11 and Pjyq are the a priori estimates of the state deviation and covariance matrix, Q(t) is the
process noise covariance matrix, and the linearized state dynamics were previously given. Eq. 27 can be
calculated and is well known in controls and orbit determination literature.2> However, in this study the a
priori process noise covariance matrix needs to be rotated from the RTN frame to the GCRF frame. Since
the equations that define the matrix Q(¢) defined in Ref. 23 are given in a specific frame. Here, that frame
is defined as being the RTN frame and thus a rotation of the process noise covariance matrix from the local
RTN frame to the GCRF frame is necessary. This is accomplished by the following rotations of the RTN
process noise covariance matrix:

Mrrn Qe Mory Mo Qo) Mory My Qe
C?GC‘RF = [,Y]FIZTN Q(v,r) [,Y]RTN [,Y]IETN Q(v,v) [,Y]RTN [’Y]ETN Q(v,a) ’ (28)
Q(a,r) ['Y]RTN Q(a,v) [’Y]RTN Q(a,a)

where the subscripts r, v, and a denote the position, velocity, and acceleration respectively for the local
RTN process noise covariance matrix. Each of the submatricies, @Q(..), has a dimension of 3 x 3 in the
RTN coordinate frame. With this information, the a priori state deviation and covariance matrix can be
calculated.

Assuming that an observation Y11 exists at time txy1, the linearized observation equation is given by

Yi+1 = Hk+lxk+1 + €k+1, (29)

where yg41 is the observation deviations from the compute observations along the reference trajectory
Vi1 = Y1 — Y (X}, 1), €xq1 is the observation noise, and Hyy is the linearized measurement equations
previously defined. The observation noise, €1, is assumed to have the following statistics:

Elex41] =0, (30)
and
Elet1€j41] = Rip1. (31)

The best estimate of the state deviation, xx+1, can be obtained by

Xpor1 = Xit1 + K1 [Yer1 — Hyr1Xr11), (32)
where the Kalman gain, Ky, is defined by

_ - - _ - —1
Kpq1 = Popr HE [Hk+1Pk+1HkT+1 + Rpy1| - (33)

The a posteriori state estimate, X (£), can then be obtained by

X1 = Xfy1 + Kpp1- (34)

The a posteriori covariance matrix can then be computed. In order to prevent Py from losing its symmetric
condition, the Joseph formulation is used and is given by

Piey1 = (I = Ky1Hiy1)Poy1(I — K1 Hy1)™ + Kip1 R Ky (35)

This formulation of Py, will always yield a symmetric matrix but it may lose its positive definite condition
for poorly observed systems.
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VI. LiAISON Truth Model Simulations

A truth model simulation of the LIAISON configuration is necessary in order to determine the effec-
tiveness of the proposed filter. In the truth model, a time history of the two satellites states are obtained
through numerical integration of the equations of motion previously defined. The simulation then generates
SST observations between the two satellites and a fictitious DSN network. The DSN network consists of
radiometric tracking from Goldstone, California, Madrid, Spain, and Canberra, Australia. A single ground
station tracking the GEO satellite is located in Sky Valley, California. Once the truth simulation is gen-
erated with the observations, the filter analysis can be performed. Figure 2 shows the LiAISON scenario
configuration for this study and the tracking links between the two satellites and the ground.

Figure 2. Satellite constellation geometry for truth model simulations for LIAISON and ground tracking
viewed in the Earth-Moon rotating frame.

The time evolution of the state dynamics are solved using the TurboProp orbit integration package for
orbit propagation.?* The TurboProp software provides the necessary numerical integration capabilities for
the generation of the true trajectories and the filter trajectories. The high-fidelity truth model used in this
paper is integrated with a DOPRIS(7)13 integrator with variable step size control.?® A relative tolerance of
10~ was used with an initial step size of 10 seconds.

A. L; Truth Model

The equations of motion for the L; truth model have been integrated in the GCRF coordinate system. The
L; satellite does not use a spherical harmonic model for its representation of Earth’s gravitational potential,
rather, Earth is assumed to be a point mass. This is considered to be a reasonable estimation since the L
orbit is at least 300,000 km from Earth. Third body perturbations are also added to the equations of motion
with all of the planets being used as well as the Moon whose states are given by the JPL DE405 ephemeris.?!
A simplified model for SRP given in Eq. 4 is used with an area-to-mass ratio of 0.01 m?/kg and a coefficient
of reflectivity, C'g, of 1.0. Table 2 gives all of the standard LIAISON simulation models used in this analysis
with appropriate references.

The halo reference orbit has been generated using a two-step process. First, a set of states has been
generated using an analytical expansion described by Richardson and Cary.?6 The reference epoch for the
first state in the series has been set to January 1, 2020 ET (Ephemeris Time), the z-axis amplitude, A, has
been set to 35,500 km, and the initial phase angle of the orbit, ¢, has been set to zero degrees. Table 1 gives
the settings used to generate the halo orbits used in this study. The set includes four states per revolution of
the approximate halo orbit and four revolutions about L;. Ref. 27 describes the benefits gained by adding
additional buffer states to this set; hence, an additional revolution of L; with four corresponding states is
appended to both ends of the set, increasing the number of states in the series to 24.

This set of states is then differentially corrected into the high-fidelity dynamical model previously de-
scribed with third body perturbations given by the JPL DE405 ephemeris using a multiple shooting differ-
ential corrector.?%:2% The differential corrector adjusts the position and velocity of each state, such that the
integrated trajectory from one state to the next results in position and velocity discontinuities no greater
than 107% km and 10~° km/s, respectively. These discontinuities are far below the level of error typically
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Table 1. Lj quasi-halo orbit parameters.

Parameter Value Comments

A, 35,500 km The z-axis amplitude

10} 0° The initial phase angle of the orbit
tref 1/1/2020 00:00:00 ET  The reference epoch, ephemeris time

observed in the navigation of halo orbiters; hence the resulting trajectory is operationally ballistic.'” Once
converged, the first and last revolution about L; are then pruned off, as described by Ref. 27, leaving four
continuous revolutions about L.

B. GEO Truth Model

The GEO satellite used in this study is placed over the western hemisphere to be visible from U.S. ground
stations. The initial latitude and longitude of the GEO satellite is 0.10963 deg N and 80.26889 deg W
respectively. GEO truth model equations of motion have also been integrated in the GCRF coordinate
system. A 20 x 20 spherical harmonic gravity field representation of Earth given by GRACE Gravity Model
02 (GGMO02C) is used.?® Third body perturbations are also added to the equations of motion with all of
the planets being used as well as the Moon whose states are given by the JPL DE405 ephemeris.?! A
simplified model for SRP given in Eq. 4 is used with an area-to-mass ratio of 0.01 m?/kg and a coefficient
of reflectivity, C'g, of 1.0. Table 2 gives all of the standard LIAISON simulation models used in this analysis
with appropriate references.

C. Measurement Generation

LiAISON SST measurements are taken between the GEO satellite and the L satellite during a 9 day period.
Both geometric range and range-rate are taken between the two satellites as described in Eq. 18 and Eq. 19.
These measurements are corrupted by zero mean Gaussian white noise with a standard deviation of 1 m and
1 mm/s respectively. Fictitious DSN range and range-rate measurements are also taken during this time
frame and corrupted by a zero mean Gaussian white noise with a standard deviation of 100 m and 0.1 mm/s
respectively. Figure 3 shows the time history of these measurements.

400,000 ; . v ® LiAISON
. / 7 7 ® GEO ground
£ 3501000% © L1 Goldstone
> 300000/ O\ ® L1 Madrid
2 : : @® L1 Canberra
T 250,000 o
50,000F - oodo
0 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9

Time Since Epoch (days)

Figure 3. Range observations to the GEO and L; orbiter from LiAISON and ground station measurements.
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Table 2. Summary of models used in the LiAISON simulations.

Model LiAISON Standard Reference

Reference Frame

Conventional inertial system GCRF -

Precession 1976 TAU -
Nutation 1980 TAU -

Planetary ephemerides JPL DE405 Ref. 21,22
Polar motion TERS -
UT1-TAI IERS —
JED/TDB/TT IERS -
Station coordinates Lat. (deg) Lon. (deg) Alt. (km) -
Goldstone 35.247 243.205 1.0711 -
Madrid 40.427 4.251 0.834 —
Canberra -35.398 148.982 0.692 -
Sky Valley 33.930 243.610 0.445 -
Reference ellipsoid a. = 6378136.3 m -
1/f = 298.257 -

Force Models

GM 398600.4415 km? /s? Ref. 30

Geopotential GGMO02C & 3-sigma clone Ref. 30
20 x 20

N body JPL DE405 Ref. 21,22

Solar radiation solar constant -

= 4.5298 x 107 %Pa at 1 AU,
conical shadow for Earth.
Measurement Models

Range Instantaneous Eq. 18
Doppler Instantaneous Eq. 19

VII. Navigation Simulation Results

The utilization of a truth model simulation allows one to be able to evaluate filter performance under a
set of ideal conditions. Since the truth states are known it is easy to investigate filter performance based
on initial state perturbations. In order to properly assess filter performance in a real world situation, the
filter equations of motion are reduced when compared to the truth model simulations. In this section, the
proposed filter is tuned in order to obtain reasonable estimates and uncertainties of the state vector given
in Eq. 1. A trade study of the necessary amount of LIAISON and ground observations is also executed.
In addition, an analysis of observation scheduling offset is conducted to determine the benefits of having
LiAISON and ground observations at different times.
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Table 3. Orbit determination filter uncertainties.

Estimation Parameters a priori uncertainty Number of Parameters
(1-sigma)

Spacecraft position 1,000 m 6
Spacecraft velocity 1 mm/s 6
SRP Coefficient 20% 2
Empirical Accelerations 6

Radial 5e-10 m/s? —

Transverse le-12 m/s? -

Normal le-12 m/s? -
SST range bias 3 m 1
DSN range bias 6 m 3
GEO-supporting ground station range bias 6 m 1
SST measurements

range 1m -

range-rate 1 mm/s =
DSN measurements

range 100 m —

range-rate 0.1 mm/s -
GEO-supporting ground station measurements

range 100 m -

range-rate 1 mm/s -

A. Filter Dynamical Model and Tuning

The reference trajectory used in the filter contains dynamical errors when compared to the truth model. The
filter dynamics use the same dynamical equations previously introduced, however, some of the parameters
have been changed to introduce modeling errors. The equations of motion for the GEO satellite in the filter
dynamical model consist of a 3-sigma clone of the GGMO02C gravity model. Third body perturbations for
both satellites are reduced to only the Sun and Moon in addition to the Earth central body force. Both
satellites are perturbed by SRP, however, the coefficient of reflectivity is initially in error. It is assumed that
the ground station locations are known nearly perfectly and are not estimated or perturbed.

Several filter runs were initially executed for a case in which there were constant observations through
LiAISON and ground stations in order to determine the necessary parameters and uncertainties to obtain a
position solution that was the most accurate as possible. The estimated parameters and a priori uncertainties
for the filter runs are given in Table 3. These values are used consistently throughout the analysis done in this
paper for each simulation and filter run that is executed. Initial random perturbations of the states within
their 3-sigma uncertainties were used during the filter tuning process. For each of these filter executions,
consistency and performance of the filter were checked in order to determine if the filter was performing
correctly. The total time since epoch that a filter run is executed is 9 days. For each filter run, a comparison
to the truth model simulation is used to compare the filter state estimates to the truth states to determine
if the estimates are reasonable and within the uncertainty bounds.

B. Trade Study

In this section we investigate the proposed satellite configuration and filter’s ability to estimate the param-
eters listed in Table 3. Over 5000 filter runs were executed to determine the accuracy of certain observation
schedules for the LIAISON satellite configuration being investigated. For each simulation there is a minimum
of 3 hours of continuous observations every 100 seconds from either the ground station or a LiAISON link
between the two satellites. After the 3 hours of continuous observations, an observation gap of “X” hours
exists. Observation gaps range from 0 hours (continuous observations) to 72 hours (i.e., very sparse data).
Both LiAISON and ground station tracking gaps are varied from continuous tracking to very sparse with a
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resolution of 1 hour to create a mesh of possible tracking schedules. The tracking schedules always start with
both LiIAISON and ground station tracking to begin simultaneously at epoch. The diagonal of the produced
mesh will always have LiIAISON and ground station tracking for each of the satellites at the exact same
time. The tracking schedules are described by the convention (LiAISON Tracking Gap, Ground Tracking
Gap). For instance, the schedule (0,0) is continuous LiAISON tracking and ground tracking of both the
L; and GEO satellites. A tracking schedule of (28,49) has 3 hours of constant tracking to begin with for
both LiAISON and ground tracking, followed by a 28 hour gap for LiIAISON and a 49 hour gap for ground
tracking.

Each of these observation schedules was then used in the processing of tracking data through the Kalman
filter previously defined. Figure 4 shows a mesh of the resulting accuracies and uncertainties obtained by
the filter runs. Figures 4(a) and 4(b) show the position accuracies determined from the filter runs when
compared to the truth model for the L; halo and GEO satellite respectively. Figures 4(c) and 4(d) show the
position uncertainties estimated from the filter runs for the I,; halo and GEO satellite respectively. All of
the values that are given in the position accuracy and uncertainty meshes are calculated by computing the
RMS of the data between the 6" and 9** day past the epoch. The values given in the mesh are determined
from the 3D-RMS of the position accuracy when compared to the truth model simulations and 3D-RMS for

Halo 3D RMS Accuracy (m) GEO 3D RMS Accuracy (m)
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Figure 4. Orbit determination accuracy and 3-sigma uncertainty for various amounts of LIAISON and ground
station tracking.
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the position uncertainties given from the filter runs. The uncertainty values given in the mesh are 3-sigma
values. Values over an accuracy or uncertainty of 500 meters for the halo orbiter and 150 meters for the
GEO orbiter are represented by the same color. The far column and row denoted by an observation tracking
gap of oo corresponds to only TLiAISON or ground station tracking data. This is provided as a check to see
how accurate one tracking method is completely separate from the other. Tracking of the halo orbiter with
continuous ground tracking is the most accurate with an uncertainty of about 70 meters. Continuous ground
tracking of the GEO satellite using only radiometric data from one ground station does not reduce the a
priori uncertainty. Continuous LiAISON only tracking provides reasonable estimates for both the halo and
GEO orbiters with an uncertainty of about 160 meters and 24 meters respectively.

Relatively continuous LIAISON tracking (continuous to 20 hour gaps) is roughly equivalent to the uncer-
tainty obtained from a ground tracking schedule of continuous tracking to 10 hour gaps. In order to achieve a
position uncertainty of less than 200 m for the halo orbiter, a ground track every day is necessary. To achieve
the same accuracy for the halo orbiter using only LiAISON tracking, a tracking schedule with 3 hours on
continuous tracking followed by a 12 hour gap is enough. This tracking schedule results in the uncertainty
of the GEO satellite position being about 30 meters. The addition of a three hour pass of ground tracking
every 3 days to a LIAISON tracking scheme on a 12 hour gap schedule reduces the uncertainty of the halo
orbit to about 50 meters and the GEO orbit to about 10 meters. While continuous LIAISON measurements
can obtain reasonable position accuracies for both satellites, the addition of relatively few ground tracking
passes can greatly improve the solution.

Ideally, one would like to have as few tracking passes from LiAISON and ground tracking as possible to
obtain an accurate solution. There exists an area of this analysis from which relatively accurate estimates
can be obtained using very few tracking passes. The tracking schedules for this region are 28-30 hour gaps
for LIAISON and 48-56 hour gaps for ground tracking. In this region the halo orbiter’s uncertainty is around
110 meters while the GEO accuracy is about 35 meters. With very few measurements from both LiIAISON
and ground tracking, reasonable estimates of both satellites states are obtained.

Figure 5 shows the time history of the position uncertainty for various tracking schedules for a few
interesting cases that arise from the trade study analysis. The tracking schedules shown are continuous
tracking (0,0), continuous LiAISON and sparse ground tracking (0,72), sparse LiIAISON and continuous
ground tracking (72,0), and a point from the previously described sparse tracking region that gives reasonable
estimates (28,49).

L1 Satellite GEO Satellite

Position Covariance Position Covariance
1e4 T T T 1e4 T T T

Tracking Schedule
(0,0)
(0,72)
(72,0)
(28,49)

Tracking Schedule

-
@
@
@
@

3-sigma Covariance (m)
o
N

3-sigma Covariance (m)
@
N

-
)
-
@
=

4 6
Time since Epoch (days)

4 6
Time since Epoch (days)

(a) Halo (b) GEO
Figure 5. Time history comparison of 3-sigma position uncertainty for various tracking schedules.

The position covariances shown in Figure 5 give the filtered updated covariance and filter predicted
covariance to make the comparison continuous for all cases. As one would expect, the continuous tracking
schedule of (0,0) gives the best results. Here both LIAISON and ground tracking are combined for continuous
observation of the two satellites. Final position uncertainties are on the order of 10 meters for the L orbiter
and 3 meters for the GEO satellite.

The next most accurate estimates come from the tracking schedules of (0,72) and (72,0). Both of these
tracking schedules produce roughly the same uncertainty for the halo orbiter. Initially, (72,0) has less
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Figure 6. Position accuracy and uncertainty for LIAISON constellation for a tracking schedule with continuous
LiAISON tracking and 3 hours of ground tracking followed by 72 hour observation gap (0,72).

uncertainty than (0,72), but the second tracking pass from the DSN around 3 days helps lower the uncertainty
to less than (72,0). After this second DSN pass, the tracking schedule (0,72) always has less uncertainty than
(72,0) but the difference is only 10’s of meters. There is a large difference in the uncertainty, however, for
the GEO satellite. The tracking schedule (0,72) for the GEO satellite is the most accurate showing that the
LiAISON data type defined in this analysis is better suited for estimating the state of the GEO satellite than
the radiometric only data from one tracking station. One can notice a large decrease in the uncertainty for
the (72,0) case when a LiAISON measurement pass is obtained around day 3. If this LIAISON pass did not
exist, the uncertainty in the GEO satellite’s position would stay around 500 m instead of reducing to 100 m.
The next LIAISON pass for this case occurs at about 6 days, and again, the uncertainty in the GEO satellite

L1 Accuracy

Position (m)

4
Time since Epoch (days)
GEO Accuracy

Position (m)

Time since Epoch (days)

Figure 7. Position accuracy and uncertainty for LIAISON constellation for a tracking schedule with 3 hours
of LIAISON followed by 72 hour observation gap and continuous ground tracking (72,0).
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is reduced significantly. Figures 6 and 7 show the position accuracy and 3-sigma uncertainties for a tracking
schedule of (0,72) and (72,0). After 3 days of observation processing, the accuracy and uncertainty of the
L; satellite for both tracking schedules is less than 100 m. The GEO satellite’s accuracy and uncertainty for
the (0,72) schedule is significantly less than the (72,0) schedule. The (0,72) GEO uncertainty is less than
100 m after 1 day of observation processing while it takes 3 days for the (72,0) schedule. The uncertainty
reduction due to the LIAISON measurement updates at 3 and 6 days is clearly visible in Figure 7.

The final schedule given in Figure 5 is (28,49). The tracking schedule of (28,49) falls within a region of
the trade study where 28-30 hour gaps for LIAISON and 48-56 hour gaps for ground tracking produces an
uncertainty of about 110 m and 35 m the halo and GEO satellite after 9 days of tracking. This tracking
schedule of (28,49) obtains position uncertainties of less than 100 m and 30 m for the halo and GEO satellites
respectively after 9 days of tracking. While the uncertainty is higher for the halo orbiter when compared to
the other tracking schedules, the uncertainty of the GEO satellite is comparable to constant ground tracking
with sparse LIAISON measurements, (72,0). Figure 8 shows the time history of the position accuracy and
3-sigma uncertainty for the tracking schedule of (28,49). The reduction in uncertainty for the L; satellite due
to measurement updates can clearly be seen. The uncertainty of the L; satellite is well above 1 km for the
first 2 days and does not reduce to under 100 m until 6 days of observations. The GEO satellite uncertainty
is less than 100 m after 2 davs of observation processine and reduces down to 30 m after 6 davs.

L1 Accuracy

1000+ , .

Position (m)

4 5
Time since Epoch (days)
GEO Accuracy

T T T

® X, 3-sigma
e Y, 3-sigma
Z, 3-sigma|

Position (m)

4
Time since Epoch (days)

Figure 8. Position accuracy and uncertainty for LIAISON constellation for a tracking schedule with 3 hours of
LiAISON followed by 28 hour observation gap and 3 hours of ground tracking followed by 49 hour observation
gap (28,49).

Another feature that shows up in the trade study analyses is the growth in uncertainty around 22 hours
which is a result of a worsening observation geometry. In the trade study analysis, there was a ridge of more
inaccurate solutions and uncertainty for tracking schedules that involved a resonance of around 22 hours for
both the L; and GEO satellites. Another resonance is noticeable at roughly 44 hours for the GEO satellite.
These resonances are caused by a periodic condition in which the LiAISON constellation is observing the
GEO satellite at roughly the same geometry as the previous day.

C. Scheduling Offset

In the previous analyses, the diagonal of the produced mesh always had LIAISON and ground station tracking
for each of the satellites at the exact same time. Measurements occurring at the exact same time from both
LiAISON and ground stations affect the performance of the filter in a certain way. In this section, we
investigate filter performance for this diagonal by offsetting the times at which the measurements occur.
Simulations and filter runs will always have equal amounts of measurements, 3 hours on and “X” hours off,
for both LiAISON and ground station tracking. The times at which these measurements are taken will be
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Figure 9. LiAISON L; and GEO measurement offset analysis. Solid lines represent 3D-RMS accuracy and
dashed lines represent 3-sigma uncertainty.

offset and compared to when the measurements are taken simultaneously.

The truth simulation used in this study is the same as before with the same dynamical models. The
only thing that has changed is the times at which LIAISON observations or ground station measurements
are taken of the L; and GEO satellites. Observations generated during this analysis always begin with
LiAISON measurements taken for the first three hours followed by a gap of no measurements for “X” hours.
Ground station observations are calculated to start exactly half way through the LiAISON observation gap.
Three hours of continuous ground station measurements spaced at an interval off 100 seconds are calculated.
Preference to the main ground station that has the most visibility with an elevation mask of 10 degrees
is given as the primary tracker of the satellites. Once the measurements are obtained for that three hour
period, the ground station measurements experience a gap of exactly “X” hours (the same gap time as the
LiAISON measurements). The process is then repeated to always have ground station measurements to
begin at exactly half of the LIAISON observation gap.

Several filter runs were executed to determine the effects of an observation offset for the diagonal elements
of the previous trade study mesh. Simulations begin with completely continuous LIAISON and ground station
tracking of the L.; and GEO satellites. An observation gap of 1 hour is then added until there is a gap of 72
hours. Figure 9(a) shows the 3D-RMS position accuracy and uncertainty of the halo orbiter for the offset
observation case as well as the no-offset observation case. The GEO satellite’s 3D-RMS position accuracy
and uncertainty is shown in Figure 9(b) for the offset observation case as well as the no-offset observation
case.

A few features show up in the offset analysis for this LIAISON constellation. The results show that
neither satellite’s uncertainty or accuracy is impacted significantly by the scheduling offset. The filter
solution accuracy and uncertainty are relatively the same for both cases. Another feature that shows up
in both analyses is the growth in uncertainty around 22 hours which is a result of a worsening observation
geometry. In the trade study analysis, there was a ridge of more inaccurate solutions and uncertainty for
tracking schedules that involved a resonance of around 22 hours for both the L; and GEO satellites. This
growth in uncertainty occurs in the offset analysis as well. Another resonance in noticeable at roughly 44
hours for the GEO satellite.

VIII.

Conclusion

A new LiAISON constellation configuration involving two satellites, one in orbit about the Earth-Moon
L; and one in geosynchronous Earth orbit, has been analyzed. This study demonstrates that the relative
and absolute navigation of two satellites at GEO and L; is possible through the use of satellite-to-satellite
range and range-rate measurements. In addition, this measurement type can supplement and significantly
improve radiometric measurements taken from the Deep Space Network for satellite navigation.
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A complete study of observation scheduling was done for the GEO and L; LiAISON constellation. Fil-
ter accuracies and uncertainties obtained through high-fidelity simulations match that of current NASA
practices for the Artemis mission. The supplement of LiAISON observations to ground tracking passes can
significantly reduce the uncertainty of an orbit determination solution. Several cases have been analyzed
and compared. Among these were continuous ground and LiAISON tracking, continuous ground and sparse
LiAISON tracking, continuous LiAISON and sparse ground tracking, and relatively sparse tracking for both
LiAISON and ground. While continuous tracking of both data types produced the best results, continuous
LiAISON with sparse ground tracking produced nearly the same accuracies as continuous ground with sparse
LiAISON tracking. This shows that the inclusion of a necessary amount of LIAISON tracking can signif-
icantly reduce the number of ground tracks necessary to obtain a given accuracy, which can significantly
reduce the costs of ground tracking. It was also shown that there exists a region in which viable tracking
schedules with relatively sparse data can produce position accuracies of about 100 m for the halo orbiter
and less than 30 m for the GEO satellite. These types of tracking schedules would allow for a reduction in
DSN time with very minimal interaction with the LiAISON constellation while maintaining a given position
uncertainty.

A simple study was also conducted to determine if the effect of obtaining observations at the same
epoch impacted the solution accuracy and uncertainty. In this study, a tracking schedule that contained
the same observation gaps was adjusted to allow for observations to come in at different times but main-
tain the observation gap duration. There was no significant impact on the accuracy and uncertainty by
acquiring observations at different times. During this analysis, interesting features were enhanced for which
poor observation geometry on a schedule of roughly 22 hours was experienced. During this timeframe, the
geometry of the LIAISON and GEO configuration is such that every observation time the GEO satellite is
being sampled in roughly the same position and geometry as it was the previous time. This reduces the
necessary information in order to obtain a more accurate solution. It is suggested through this study that
one try to minimize the times in which one takes measurements during this period.

The configuration and simulations studied in this paper are representative of a realistic LIAISON nav-
igation configuration. The analysis has been done in a high-fidelity regime with the necessary dynamical
errors that plague the orbital regime. These dynamical errors were overcome to obtain accurate naviga-
tion solutions using only radiometric data from a satellite based at the Earth-Moon libration point L;. It
has been shown that absolute navigation is possible for a GEO satellite and a lunar libration orbiter us-
ing minimal ground tracks that have been supplemented with LiAISON observation data. This study has
demonstrated LiAISON’s potential capability as an addition to the Deep Space Network to help improve
navigation solutions for future missions.
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